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Why perform tests?
Model Validation

“All models are wrong”
(D. Smallwood)

Exploratory Tests
Diagnose Failure
Health Monitoring
Some physics remain 
poorly understood; tests 
are needed to help to 
create models and 
guide design.

Aerodynamics
Coupling between 
structure and nonlinear 
magnetic generator?
Backlash in gears?

How? …

Experimental Studies of Dynamic Systems
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Some Models for Dynamic Systems
Nonlinear State Space

Linear Time Invariant (LTI)
Appropriate for structures with linear force-displacement 
relationships

Linear Time Periodic (LTP)
Any nonlinear system linearized about a periodic orbit.  
Common for rotating structures.

( ) ( )
( ) ( )

x t x t u
y t x t u

= +
= +

A B
C D

x x u
y x u

= +
= +

A B
C D

( , , )
( , , )

x x t u
y x t u

=
=

f
g

linearize 
about a 

single state

linearize about a 
periodic motion

k=k(θ)

tower

blade

tower

blade

tower

blade

tower

blade
k=constant

k=k(θ)

θ(t)=ωt

ω=constant
tower

blade

tower

blade

Experimental Methods Available
Nonlinear State Space

Linear Time Invariant (LTI)
Appropriate for structures with linear force-displacement 
relationships

Linear Time Periodic (LTP)
Rotating structures where a parameter changes with time, 
or any nonlinear system linearized about a periodic orbit.
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Very limited beyond 1st or 2nd order!

Well established time and frequency 
domain methods routinely used up to 

high system order.

Allen’s research group has recently 
extended several LTI System 

Identification Methods to LTP Systems!
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Consequences of Time‐Periodic Behavior

Parametric resonance
Damping depends on the 
period of the system (e.g. 
the rotation speed).
Damping may be negative 
(instability) at certain 
speeds.

What would be the 
consequence if a turbine 
has a parametric 
resonance that was not 
accounted for in the 
design?
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LTP model captures physics that are 
completely missed by an LTI approximation!!
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Consequences of Time‐Periodic Behavior

System may respond (i.e. 
vibrate, generate noise, 
etc…) at unexpected 
frequencies.

Resonance may be 
excited by inputs at 
various frequencies.
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LTI LTP

u(t)=u0sin(ωt) → y(t)=y0sin(ωt-φ0) u(t)=u0sin(ωt) → y(t)=y0sin(ωt-φ0)       
+ y1sin((ω+1ωΑ)t−φ1)+ …

Does a wind 
turbine really 
need to have 
three or more 

blades?

Simulated Identification of Jeffcott Rotor

Jeffcott Rotor on an elastic, 
anisotropic shaft and an 
anisotropic foundation.

kRx = 1, kRy = 1.2
kFx = 1, kFy = 1.5,
Stability analysis, 
unstable for:

0.720 < Ω < 0.755
0.785 < Ω < 0.825
0.848 < Ω < 0.920

Simulate system identification 
with constant rotation rate:

Ω = 0.5
Impulse response simulated 
in both X and Y directions 
using time integration.
Response sampled 100 times 
per shaft revolution.
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50% Stiffer
20% Stiffer

http://en.wikipedia.org/wiki/
Wind_turbine



5

Simulated Measurements
Impulse response 
simulated using time 
integration.

“Measured” response 
contaminated with 
random measurement 
noise.
Response sampled 
100 times per shaft 
revolution.

Measurements points 
at the rotor in both the 
x- and y- directions 
(two outputs).
2-DOF system 
responds at eight 
frequencies?

(appears to have 8 
modes if thought of as 
an LTI system)
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Identification from Transient Response
The equations of motion of a general linear time-periodic 
system can be written as follows with.

State transition matrix used to develop modal description for 
LTP system:

Identical to LTI definition except that mode vectors are periodic 
functions of time:

The eigenvalues are constant, so each underdamped mode of 
the STM has a constant natural frequency and damping ratio

These are called the Floquet exponents of the LTP system.
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Fourier Series Expansion Method

Expand each residue vector in a Fourier series

Insert into eq. for y(t), setting t0=0 to simplify the notation.

Or, the FFT can be used to transfer to the frequency domain:
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LTP systems have modes that are analogous to the modes of an LTI
system.

• LTI Nat. frequencies and damping ratios → LTP Floquet Exponents
• LTI Mode shapes (constant) → LTP mode shapes (periodic)

• LTP mode shapes can be shown to give rise to additional frequencies 
in the response and hence to additional peaks in the spectrum.
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Fourier Series Expansion (FSE) of Rotor’s Response

2-DOF system appears to have 8 modes.
ωA=1.0 rad/s (twice the shaft rotation frequency)
The relationship Im{λr+imωA} can be used to identify which terms Rr,m
are present in the Fourier Expansion of Rr (t).
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State Matrix
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A(3,1) Act
A(3,1) Est
A(3,2) Act
A(3,2) Est

‘Est’ – estimated, ‘Act’ – actual

State matrix A(t) 
estimated from identified 
model for state transition 
matrix.
Physical interpretation: 
these give the effective 
stiffness as a function of 
shaft angle.
This information can be 
used to verify a model, or 
to predict stability 
boundaries.
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Previous developments were for free-response 
measurements.  Can the theory be extended to input-
output or output-only measurements?

Picture: Horns Rev wind farm, Denmark’s largest at 160 MW

Extension to Output Only MeasurementsExtension to Output Only Measurements
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LTP System: Input at a single frequency causes output at an 
infinite number of frequencies.
Define exponentially modulated signal space:

Now the concept of a transfer function can be readily 
extended to LTP systems (Wereley, 1991)

Harmonic Transfer Function (HTF)

LTI Systemu(t)=u0sin(ωt) y(t)=y0sin(ωt-γ)

LTP Systemu(t)=u0sin(ωt)
y(t)=y0sin(ωt-γ0) + 

y1sin((ω+1ωA)t-γ1) + 
…

EMP signal
EMP signal with 

different magnitude and 
phase at each frequency

N. M. Wereley, PhD Thesis, "Analysis and Control of Linear Periodically Time Varying Systems," 
Department of Aeronautics and Astronautics. Cambridge, MIT, 1991.
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HTF: Modal Representation

As for LTI systems, the HTF can be expressed in terms of the 
modes:

Output Only Identification based on Autospectrum:
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Simulated Application: 5 MW Wind Turbine

Applied to Simulated Wind Turbine in:
M. S. Allen, M. W. Sracic, S. Chauhan, and M. H. 
Hansen, "Output-Only Modal Analysis of Linear 
Time Periodic Systems with Application to Wind 
Turbine Simulation Data," MSSP, vol. 25, pp. 
1174-1191, 2011.

Measurements simulated from the 5MW 
reference turbine by J. Jonkman:

Turbine model created in HAWC2 
simulation code (by M. Hansen at RISØ
Nat. Lab.)
Measurements of turbine simulated for 
3.3 hours due to wind excitation.

13.3m turbulence box repeated 16384 
times.
75 acceleration measurements simulated 
on tower (three directions) and blades
(edgewise and flapwise).

Traditional LTI Modal analysis leads to 
erroneous results unless a multi-blade 
coordinate transformation is applied. 

If the rotor is anisotropic, the system will be 
LTP even after applying the coordinate 
transformation.

B1

B2

B3

Traditional Spectra (0 to 1.6 Hz)
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Multiple modes 
seem to exist –

explained by LTP 
theory.  Time 

varying modes 
identified using 
harmonic output 

spectra.
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Another Challenge: How to Acquire Measurements?

Tests difficult due to sheer size
Most common sensors must be 
attached to the structure.
Cables must be run from the 
sensors to data acquisition 
hardware.

Laser Doppler Vibrometer:
Measures Doppler shift in a 
beam of laser light → Captures 
the velocity of the surface at a 
point.
Advantages:

Non-contact laser measurement 
simplifies setup
Impact excitation is challenging 
– use the natural excitation from 
the wind.

Disadvantage:
Captures the response at only 
one point
Too expensive to use many 
lasers in parallel

Nordtank, 
1.5MW, 64m 

rotor 
diameter, 

1995

Image from www.windpower.org

CSLDV Solution:
Continuous-Scan Laser Doppler Vibrometry 
(CSLDV):  Velocity is measured as the laser spot 
sweeps continuously over the structure.

First presented by Sriram & Hanagud (1990)
Later extended by Stanbridge, Martarelli & Ewins

Sinusoidal Excitation
Transient (Impact) Excitation

CSLDV with Lifting for Transient Response: Allen & 
Sracic 2010, Yang, Allen & Sracic 2010

LDV with scanning mirrors

drive signal for 
scanning mirrors

Movie: 
link 1, 
link 2
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A Useful Laser Show?

OMA‐CSLDV on Wind Turbine Blade
Field Test:

Renewegy LLC in Oshkosh, 
WI:  20kW wind turbine with 
~10m diameter rotor, ~30m 
tower height.
Rotor parked (brake applied) 
during the test.
Blade tilted so that the LDV 
measures in the flapwise
direction.
The blade was excited by 
only the ambient wind (3.5 
m/s average wind speed) as 
both conventional and 
CSLDV measurements were 
acquired.
Retro-reflective tape used, 
66.4 meter standoff distance.
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Conventional OMA (Tip Measurement)

Laser positioned at a 
fixed point at the tip 
of the blade as 
shown.
Power spectrum 
shows several 
peaks.
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measured at the blade tip

OMA‐CSLDV Measurement

Laser scanned along the 
length of the blade for 
CSLDV measurement.
Several modes identified in 
the harmonic power 
spectrum.
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Composite FRF with 1.6Hz Scanning Frequency

Mode Conventional test 
in stiff fixture 

Fixed point OMA 
on tower 

CSLDV OMA 
on tower 

- - 0.81Hz 0.78Hz 

Flap Wise 
Bending 1 3.36Hz 

3.13Hz 
3.37Hz 
3.63Hz 

3.13Hz 
3.36Hz 
3.62Hz 

Edge Wise 
Bending 1 5.24Hz 4.38Hz - 

- - 9.13Hz - 

Flap Wise 
Bending 2 11.40Hz 

10.63Hz 
10.94Hz 
11.25Hz 

10.62Hz 
10.86Hz 
11.29Hz 
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Mode Shapes Identified by OMA CSLDV

CSLDV reveals the deformation 
shape of the structure 
associated with each frequency.
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Comparison with Conventional Methods
Conventional Test Methods:

OMA with accelerometers (fixed 
sensors)

Requires attaching sensors to the 
points of interest and running cables 
to data acquisition (or wireless 
transmitters).

OMA with conventional scanning 
LDV

At least two measurement points 
needed to obtain mode shapes.
Cost per LDV:  $80,000+
Each pair of points must be 
observed for at least 10 minutes.

The results presented here were 
acquired with one ground based 
laser and two 10-min time records!
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Conclusions & Outlook
Linear Time Periodic (LTP) systems are capable of modeling many 
important phenomena.
Most system identification concepts for linear time-invariant systems 
extend readily to LTP systems.

Frequency Domain Transfer Function
Mode Indicator Functions
System Identification Routines (for parameter identification)
Insight and intuition acquired for LTI systems.

Outcomes:
Continuous-scan Laser Doppler Vibrometry can be used to 
reduce vibration test time by two orders of magnitude.
Many other systems can be treated experimentally using this 
technique.

Rotating machines such as wind turbines, helicopters
Nonlinear systems such as the human neuromuscular system...

A short course has been created on these topics and will be 
presented in upcoming conferences and to industry.

Extra Slides
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New Remote Sensing Vibrometer

Remote Sensing Vibrometer
Prototype from Polytec®

1550nm wavelength
Higher power (10mW)
Designed for long range 

measurements, improved signal.

20kW wind turbine 
with 9.4m diameter rotor
and 30m tower height.
77 m standoff from laser head to 
target.
Rotor was parked (brake applied) 
The blade was excited by only the 
ambient wind with 9 m/s max wind 
speed

Field test at Renewegy
LLC in Oshkosh, WI: Scan Path

Video of CSLDV with RSV

Application to Wind Turbine
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Mode Natural frequency Damping

Tower Bending 0.81Hz 1.61%

Flap Wise Bending 1 3.33Hz 1.52%

Flap Wise Bending 2 12.42Hz
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Retro-reflective tape was not 
needed for the RSV

The conventional 633nm laser 
required retro-reflective tape

Surface velocity of the laser 
spot at a scan frequency of 
36Hz is approximately 500m/s.
400s time record
Response dominated by 36Hz 
but other frequency components 
are well captured.

RSV has great potential for 
lifting where high scan 
frequencies are preferred
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Measured Mode Shapes
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Blade moves as a rigid body 
in the 0.81 Hz mode, 
revealing that this is a tower 
bending mode.
First blade bending mode 
found to be 3.33Hz
12.42Hz and 13.41Hz 
frequencies revealed to be 
second blade bending 
modes
400s data allows for 31 
averages

A longer time history 
would be preferred.

Imaginary part of shapes 
thought to be an artifact of 
the short data length.
Noisy second bending mode, 
weakly excited

LDV measurement point 
near the tip of the blade

Validation with Traditional SLDV
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LDV at Tip Roving RSV

Laser position determined by 
measuring the angle of the 
RSV Laser head
Measurements agree fairly well 
with those obtained by CSLDV

Two additional peaks could be 
identified around 4Hz and 5Hz 
due to lower speckle noise

There are several points which 
appear to be questionable 

Due to changing wind 
conditions?

SLDV used 5.3 min long 
measurements at each of the 5 
points = total 26.5min

OMA-CSLDV achieves far 
higher resolution with a single 
6.7 min measurement!


